Exercise 18

Use Leibnitz rule to prove the following identities:

$$
F(x)=\int_{0}^{x} t^{n}(x-t)^{m} d t, \text { show that } F^{(m)}=\frac{m!}{n+1} x^{n+1},
$$

m and n are positive integers.

Solution

Observe that $F(x)$ has the same form as the previous exercise, so we can use the result we proved there. Specifically, if

$$
F(x)=\int_{0}^{x}(x-t)^{n} u(t) d t
$$

then

$$
F^{(n+1)}=n!u(x), \quad n \geq 0 .
$$

In this exercise, $u(t)=t^{n}$ and the exponent of $(x-t)$ is m. Thus,

$$
F^{(m+1)}=m!x^{n} .
$$

Now we can simply integrate both sides to get the desired result.

$$
\begin{gathered}
\frac{d}{d x} F^{(m)}=m!x^{n} \\
F^{(m)}=\int m!x^{n} d x
\end{gathered}
$$

Therefore,

$$
F^{(m)}=\frac{m!}{n+1} x^{n+1}
$$

where m and n are positive integers.

